

Georgian Transmission
System Resilience: GSE's
Strategic Planning for
Extreme Events

Contents

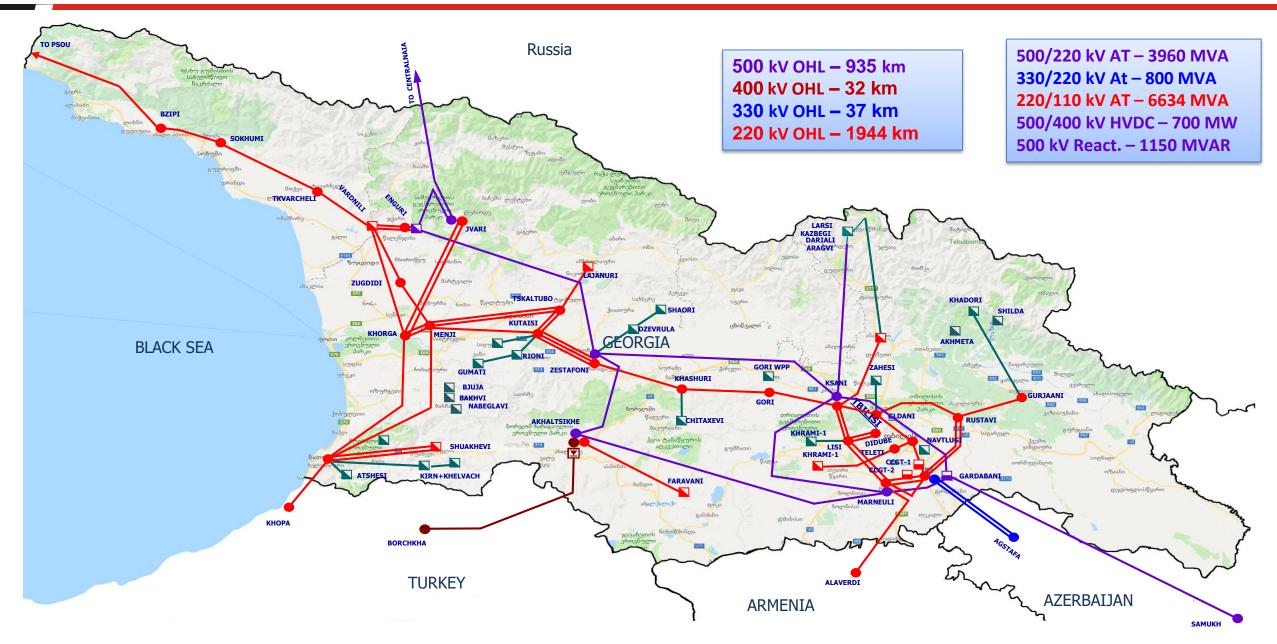
- 1. Georgian power system overview
- 2. Georgian power system challenges
- 3. Existing and planned capacitates
- 4. Georgian transmission system resilience study
- 5. Extreme events impact on transmission infrastructure past examples from Georgia
- 6. Technological disruption in SCADA system
- 7. Georgia's blackout stats 2003 2023
- 8. Saving from blackouts and brownouts by RAS
- 9. Electricity crisis scenarios
- 10. Georgia's risk preparedness plan

Georgian Power System Overview

Electricity generation:

- Total installed capacity: 4,621 MW
 - 3,410 MW hydro (2,387 MW reservoir and 1023 MW RoR)
 - 1,190 MW thermal
 - 21 MW wind
- Distributed energy resources 103 MW

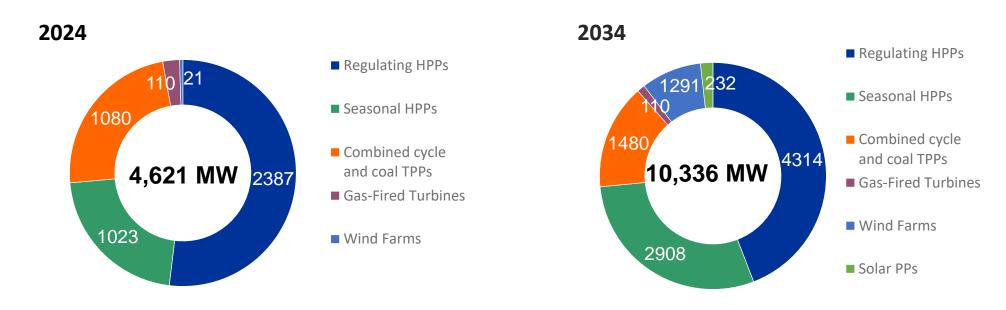
Georgian transmission system is well interconnected with neighboring countries:


- Türkiye 400kV AC (with DC B2B)
- Russia 500kV and 220 KV AC
- Armenia 220kV AC connection
- Azerbaijan 500kV AC and 330kV AC

Electricity demand:

- 2024 Total Demand: 14.4 TWh
- 2024 Peak Load: 2.3 GW (August)
- Average Annual Demand Growth: 3.5 4.5%

Georgian Power System Map


Georgian Power System Challenges

- Reduced flexibility insufficient reserve capacity
- Stalled pipeline of new generation projects leading to generation – demand gap
- Different synchronous zones around Georgia
- Georgia's electricity market is not coupled to any unified market, e.g., Pan-European market
- Non-backed-up interconnectors lack of redundancy
- Radial or inadequately backed-up network

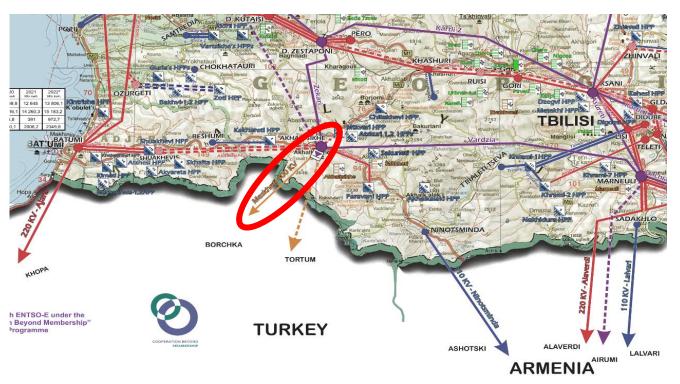
Existing and Planned Capacitates According to TYNDP*

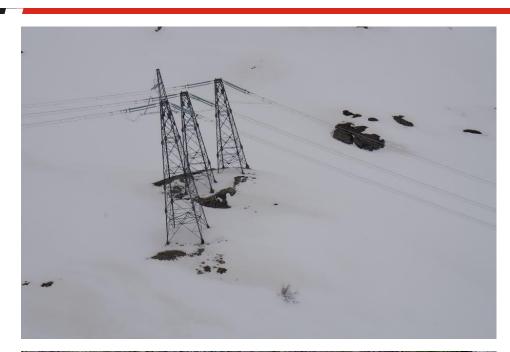
YEAR	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Utility-Scale Solar Installed Capacity (MW)	0	0	5	96	164	232	232	232	232	232	232	232
WIND Installed Capacity (MW)	21	21	49	305	627	921	1176	1291	1291	1291	1291	1291

^{*} Georgia's 10-Year Network Development Plan (Link)

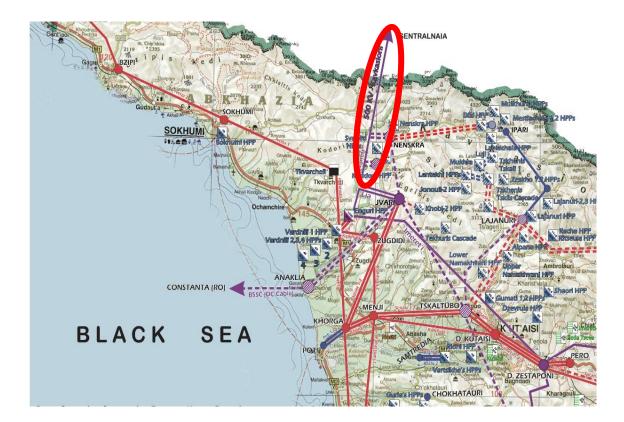
Georgian Transmission System Resilience Study

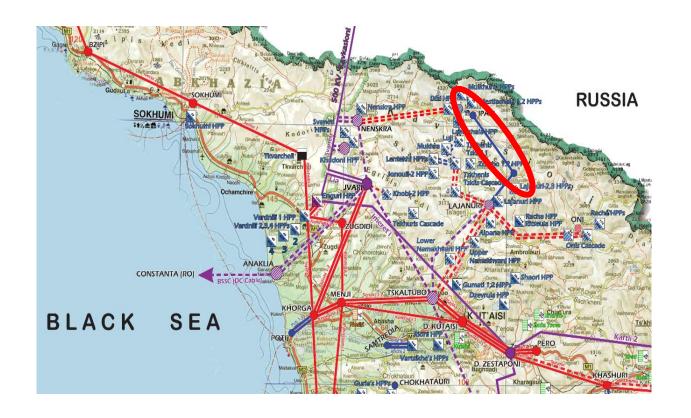
- Developer: Georgian State Electrosystem (GSE) Georgia's transmission system operator. The project concept originated from CIGRE SEERC study meetings and conferences. GSE has initiated R&D and project development in Georgia.
- Primary focus: Enhancing climate resilience to support the energy transition.
- Objective: Evaluate Georgia's transmission system resilience to extreme events, focusing on robustness, resourcefulness, rapid recovery, and adaptability to ensure supply security and network redundancy.
- Key climate change issues: heavy snow and ice coverage, landslides, earthquakes and avalanches debris flows and floods, extreme heat.





- Damaged infrastructure of 400 kV OHL
 Meskheti in 2017
- Caused by heavy snow
- The OHL interconnects Georgian power system to Turkey through B2B link






- Damaged infrastructure of 500 kV OHL
 Kavkasioni in 2018
- Caused by heavy snow and wind
- The OHL interconnects Georgian and Russian power systems

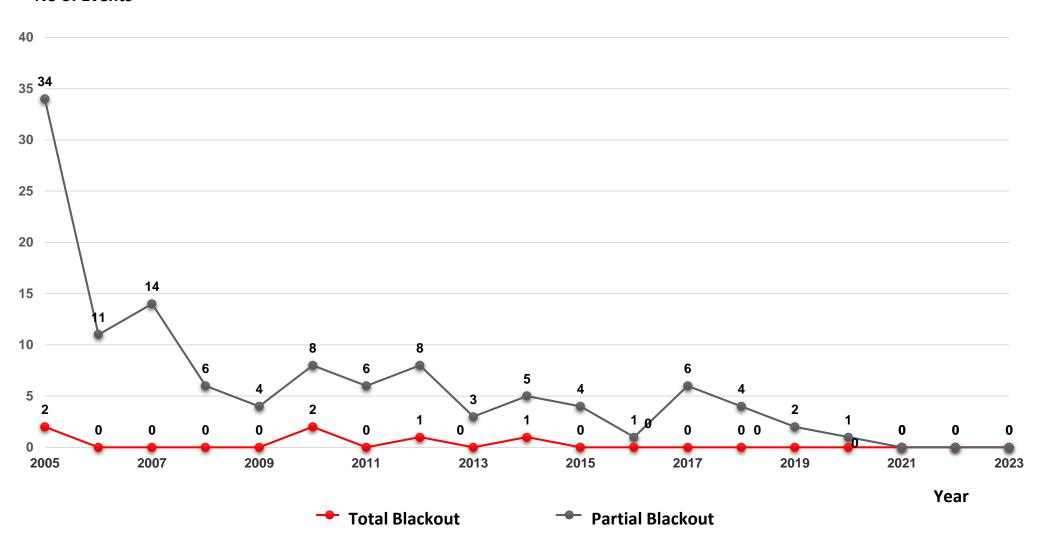
- Damaged towers of 110 kV radial OHL Ifari
- Caused by heavy snow in 2018-2021 years

- 220 kV OHL Didgori which is a part of ring configuration grid in eastern Georgia impacted by ice coverage
- Damaged towers of 220 kV OHL Koda caused by heavy hail and hurricane

Technological Disruption in SCADA System in 2021

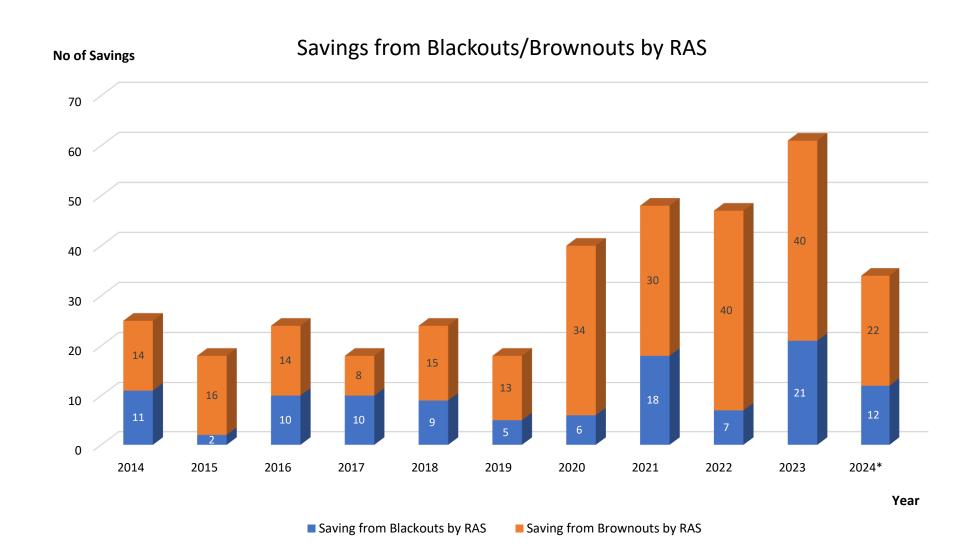
- A failure in the cooling system of the server led to a rise in temperature within the server rooms, exceeding the critical level of 45°C. As a result, access to the control and monitoring software Spectrum for IT and SCADA users was completely terminated, putting GSE's critical infrastructure at risk.
- The incident triggered an emergency mode for the servers, resulting in a total shutdown of part of the system. The backup dispatch center of the SCADA system continued to operate. However, access to the Spectrum software for SCADA system users was temporarily suspended during the resolution of the technological disruption, which lasted between 30 to 40 minutes.

Taken and Planned Measures



- ✓ Procurement of Technical Support for UPS and Cooling Systems
- ✓ Regular monitoring and technical service of the UPS and cooling systems are conducted to ensure their optimal performance
- Detailed instructions have been developed to implement the necessary measures effectively
- ✓ To guarantee the uninterrupted operation of IT services, procurement of modern equipment is currently in progress
- ✓ Additionally, arrangements are being made for an independent SMS system to monitor the temperature of the server infrastructure

Georgia's Blackout Stats 2003 - 2023



No of Events

Saving from Blackouts & Brownouts by RAS

Electricity Crisis Scenarios

Identifying electricity crisis scenarios

- 1. Identification of scenario
- 2. Cross-border dependencies
- 3. Description of scenario
- 4. Submission of scenario

Evaluating scenarios

- 1. Assessment of impact
- 2. Description of impact

Ranking of scenarios

1. Ranking of all scenarios

Electricity Crisis Scenarios

Scenario 1

2 Scenario 2

3 Scenario 3

Classification	Events per year	1 x in years	Description/example of initiating event			
Very likely	≥ 0.5	2 or less	event expected practically every year, e. extreme winds/storms causing multip failures of overhead lines may be expected nearly every year in some areas			
Likely 1	0.2-0.5	2-5	event expected once in a couple of year e.g. extreme heat wave causing limits of output of open-loop water-cooled pow- plants, low water levels at hydro plant higher load, etc.			
Possible 2	0.1-0.2	5-10	event expected or taken into considerations as a potential threat, e.g. cyber or malicionattack			
Unlikely 3	0.01-0.1	10-100	very rare event with potentially huge impace.g. simultaneous floods causir unavailability of generation, distribution ar transmission infrastructure			
Very unlikely	≤ 0.01	100 or more	event not observed but potential disastrous, e.g. earthquake causing a hug destruction of transmission, distribution ar generation infrastructure			

STEP 1: Determine likelihood of scenario

Identify class of likelihood

STEP 2: Determine impact of scenario

Identify class of impact using risk indicators such as EENS and LOLE

Crisis Impact Scale

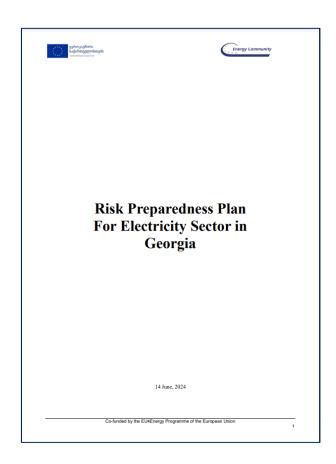
Classification	EENS%	LOLE		
	(of annual demand)	[hours]		
Disastrous	≥0,25%	≥168		
Critical 23	≥0,05% and <0,25%	≥48 and <168 2 3		
Major	≥0,01% and <0,05%	≥12 and <48 1		
Minor 1	≥0,002% and <0,01%	≥3 and <12		
Insignificant	<0,002%	<3		

Electricity Crisis Scenarios

✓ Evaluation of scenarios

Scenario	Likelihood	EENS%	LOLE
1	Likely	Minor	Major
2	Possible	Critical	Critical
3	Unlikely	Critical	Critical

Support for the numbers:


- Likely: 1 every 2-5yrs → 20-50% probability
- Possible: ... 5-10yrs → 10-20% probability
- Unlikely: ...10-100yrs → 1-20% probability

Impact		Likelihood					
EENS%	LOLE	Very likely	Likely	Possible	Unlikely	Very unlikely	
Disastrous	Disastrous	Disastrous	Disastrous	Critical	Major	Minor	
Disastrous	Critical	Disastrous	Critical	Critical	Major	Minor	
Critical	Disastrous	Disastrous	Critical	Critical	Major	Minor	
Disastrous	Major	Disastrous	Critical	Major	Major	Minor	
Major	Disastrous	Disastrous	Critical	Major	Major	Minor	
Disastrous	Minor	Disastrous	Critical	Major	Major	Minor	
Minor	Disastrous	Disastrous	Critical	Major	Major	Minor	
Disastrous	Insignificant	Disastrous	Critical	Major	Major	Minor	
Insignificant	Disastrous	Disastrous	Critical	Major	Major	Minor	
Critical	Critical	Disastrous	Critical	Ma	Min 3	Minor	
Critical	Major	Critical	Critical	Major	Minor	Minor	
Major	Critical	Critical	Critical	Major	Minor	Minor	
Critical	Minor	Critical	Major	Major	Minor	Minor	
Minor	Critical	Critical	Major	Major	Minor	Minor	
Critical	Insignificant	Critical	Major	Major	Minor	Minor	
Insignificant	Critical	Critical	Major	Major	Minor	Minor	
Major	Major	Critical	Major	Major	Minor	Insignificant	
Major	Minor	Major	Major	Minor	Minor	Insignificant	
Minor	Major	Major	Maj 🚹	Minor	Minor	Insignificant	
Major	Insignificant	Major	Major	Minor	Minor	Insignificant	
Insignificant	Major	Major	Major	Minor	Minor	Insignificant	
Minor	Minor	Major	Minor	Minor	Insignificant	Insignificant	
Minor	Insignificant	Major	Minor	Minor	Insignificant	Insignificant	
Insignificant	Minor	Major	Minor	Minor	Insignificant	Insignificant	
Insignificant	Insignificant	Minor	Minor	Insignificant	Insignificant	Insignificant	

Georgia's Risk Preparedness Plan

- On December 2, 2020, the Security of Electricity Supply rules were approved, in accordance with EU Regulation 2019/941 on risk preparedness in the electricity sector
- Risk Preparedness Plan is a strategic framework designed to mitigate risks, ensure quick recovery, and sustain operations during disruptions
- Prepared by GSE in cooperation with the Energy Community:
 - Competent authority Ministry of Economy and Sustainable Development of Georgia
 - Crisis coordinator Inter-Institutional Group for Energy Security (IGES)

Thank you for your engagement!

