

Georgian Transmission System Resilience: GSE's Strategic Planning for Extreme Events

11th SEERC TAC Meeting Rome, January 2025

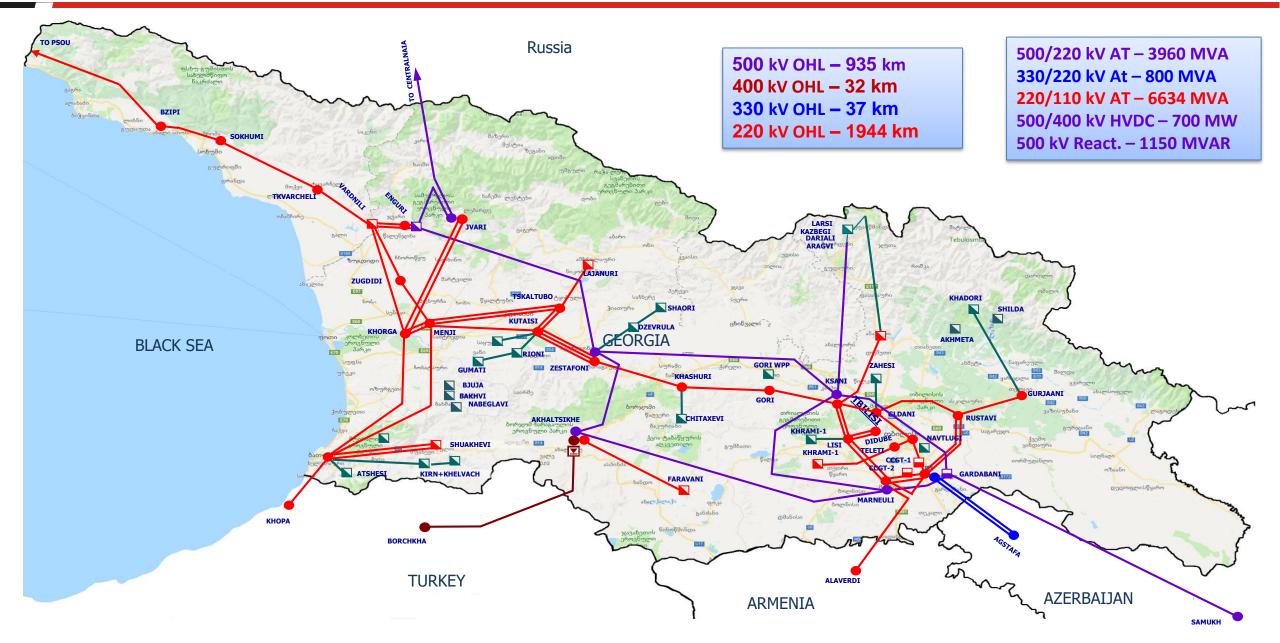
Contents

- 1. Georgian power system overview
- 2. Georgian power system challenges
- 3. Existing and planned capacitates
- 4. Georgian transmission system resilience study
- Extreme events impact on transmission infrastructure past examples from Georgia
- 6. Technological disruption in SCADA system
- 7. Georgia's blackout stats 2003 2023
- 8. Saving from blackouts and brownouts by RAS
- 9. Electricity crisis scenarios
- 10. Georgia's risk preparedness plan

Electricity generation:

- Total installed capacity: 4,621 MW
 - 3,410 MW hydro (2,387 MW reservoir and 1023 MW RoR)
 - \circ 1,190 MW thermal
 - \circ 21 MW wind
- Distributed energy resources 103 MW

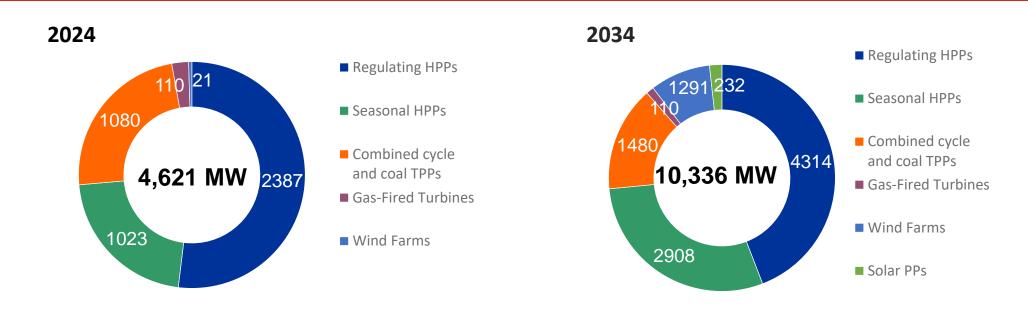
Georgian transmission system is well interconnected with neighboring countries:


- Türkiye 400kV AC (with DC B2B)
- Russia 500kV and 220 KV AC
- Armenia 220kV AC connection
- Azerbaijan 500kV AC and 330kV AC

Electricity demand :

- 2024 Total Demand: 14.4 TWh
- 2024 Peak Load: 2.3 GW (August)
- Average Annual Demand Growth: 3.5 4.5%

Georgian Power System Map


Georgian Power System Challenges

GSE

- Reduced flexibility insufficient reserve capacity
- Stalled pipeline of new generation projects leading to generation – demand gap
- Different synchronous zones around Georgia
- Georgia's electricity market is not coupled to any unified market, e.g., Pan-European market
- Non-backed-up interconnectors lack of redundancy
- Radial or inadequately backed-up network

Existing and Planned Capacitates According to TYNDP*

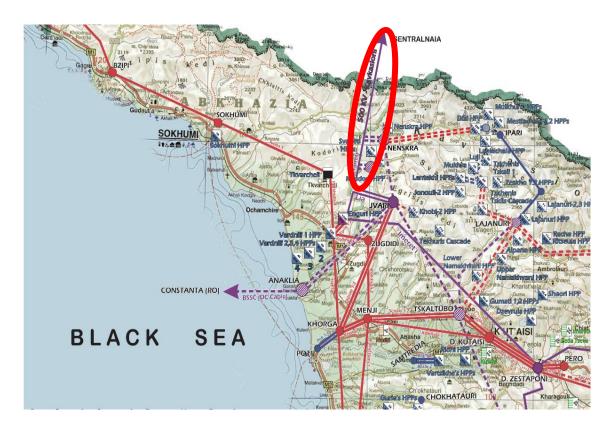
YEAR	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Utility-Scale Solar Installed Capacity (MW)	0	0	5	96	164	232	232	232	232	232	232	232
WIND Installed Capacity (MW)	21	21	49	305	627	921	1176	1291	1291	1291	1291	1291

* Georgia's 10-Year Network Development Plan (Link)

Georgian Transmission System Resilience Study

- Developer: Georgian State Electrosystem (GSE) Georgia's transmission system operator. The project concept originated from CIGRE SEERC study meetings and conferences. GSE has initiated R&D and project development in Georgia.
- Primary focus: Enhancing climate resilience to support the energy transition.
- Objective: Evaluate Georgia's transmission system resilience to extreme events, focusing on robustness, resourcefulness, rapid recovery, and adaptability to ensure supply security and network redundancy.
- Key climate change issues: heavy snow and ice coverage, landslides, earthquakes and avalanches debris flows and floods, extreme heat.

- Damaged infrastructure of 400 kV OHL
 Meskheti in 2017
- Caused by heavy snow
- The OHL interconnects Georgian power system to Turkey through B2B link


Extreme Events Impact on Transmission Infrastructure: Past Examples

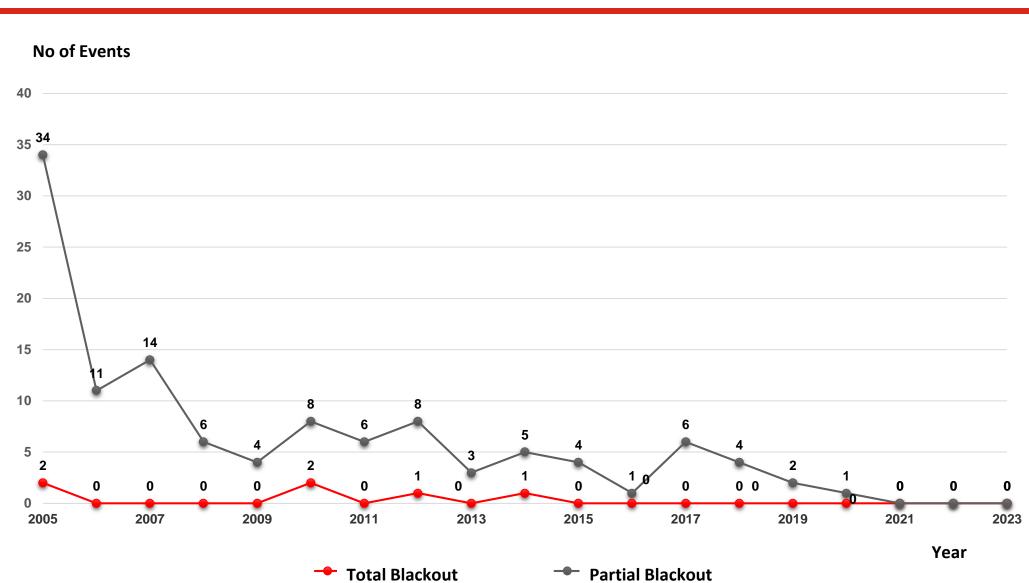
- Damaged infrastructure of 500 kV OHL Kavkasioni in 2018
- Caused by heavy snow and wind
- The OHL interconnects Georgian and Russian power systems

- Damaged towers of 110 kV radial OHL Ifari
- Caused by heavy snow in 2018-2021 years

- 220 kV OHL Didgori which is a part of ring configuration grid in eastern Georgia impacted by ice coverage
- Damaged towers of 220 kV OHL Koda caused by heavy hail and hurricane

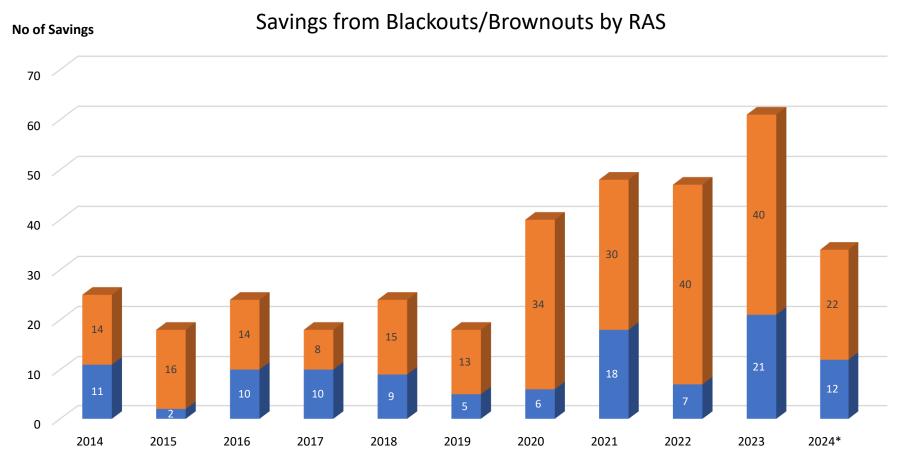
Technological Disruption in SCADA System in 2021

- A failure in the cooling system of the server led to a rise in temperature within the server rooms, exceeding the critical level of 45°C. As a result, access to the control and monitoring software Spectrum for IT and SCADA users was completely terminated, putting GSE's critical infrastructure at risk.
- The incident triggered an emergency mode for the servers, resulting in a total shutdown of part of the system. The backup dispatch center of the SCADA system continued to operate. However, access to the Spectrum software for SCADA system users was temporarily suspended during the resolution of the technological disruption, which lasted between 30 to 40 minutes.



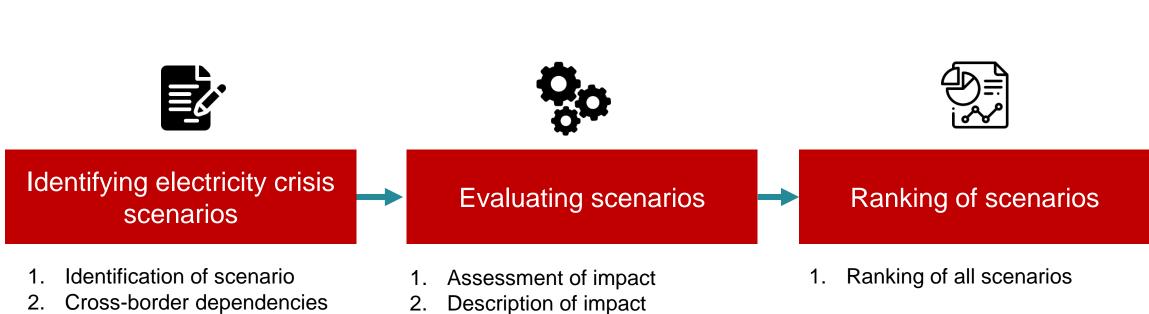
Procurement of Technical Support for UPS and Cooling Systems

- Regular monitoring and technical service of the UPS and cooling systems are conducted to ensure their optimal performance
- Detailed instructions have been developed to implement the necessary measures effectively
- ✓ To guarantee the uninterrupted operation of IT services, procurement of modern equipment is currently in progress
- Additionally, arrangements are being made for an independent SMS system to monitor the temperature of the server infrastructure


Georgia's Blackout Stats 2003 - 2023

GSÈ

Saving from Blackouts & Brownouts by RAS



Year

Saving from Blackouts by RAS Saving from Brownouts by RAS

Electricity Crisis Scenarios

- Description of scenario 3.
- Submission of scenario 4.

Description of impact 2.

Electricity Crisis Scenarios

Scenario 1
 Scenario 2
 Scenario 3

Crisis likelihood scale							
For classification of likelihood Classification	d of crisis, a five- Events per year	step scale is use 1 x in years	ed: Description/example of initiating event				
Very likely	≥ 0.5	2 or less	event expected practically every year, e.g. extreme winds/storms causing multiple failures of overhead lines may be expected nearly every year in some areas				
Likely 1	0.2-0.5	2-5	event expected once in a couple of years, e.g. extreme heat wave causing limits on output of open-loop water-cooled power plants, low water levels at hydro plants, higher load, etc.				
Possible 2	0.1-0.2	5-10	event expected or taken into consideration as a potential threat, e.g. cyber or malicious attack				
Unlikely 3	0.01-0.1	10-100	very rare event with potentially huge impact, e.g. simultaneous floods causing unavailability of generation, distribution and transmission infrastructure				
Very unlikely	≤ 0.01	100 or more	event not observed but potentially disastrous, e.g. earthquake causing a huge destruction of transmission, distribution and generation infrastructure				

STEP 1: Determine likelihood of scenario

Identify class of likelihood

STEP 2: Determine impact of scenario

 Identify class of impact using risk indicators such as EENS and LOLE

Crisis Impact Scale

Classification	EENS%	LOLE		
	(of annual demand)	[hours]		
Disastrous	≥0,25%	≥168		
Critical 2 3	≥0,05% and <0,25%	≥48 and <168 2 3		
Major	≥0,01% and <0,05%	≥12 and <48 1		
Minor 1	≥0,002% and <0,01%	≥3 and <12		
Insignificant	<0,002%	<3		

✓ Evaluation of scenarios

Scenario	Likelihood	EENS%	LOLE
1	Likely	Minor	Major
2	Possible	Critical	Critical
3	Unlikely	Critical	Critical

Support for the numbers:

- Likely: 1 every 2-5yrs → 20-50% probability
- Possible: ... 5-10yrs → 10-20%
 probability
- Unlikely: ...10-100yrs → 1-20% probability

Imp	oact	•		Likelihoo	d	
EENS%	LOLE	Very likely	Likely	Possible	Unlikely	Very unlikely
Disastrous	Disastrous	Disastrous	Disastrous	Critical	Major	Minor
Disastrous	Critical	Disastrous	Critical	Critical	Major	Minor
Critical	Disastrous	Disastrous	Critical	Critical	Major	Minor
Disastrous	Major	Disastrous	Critical	Major	Major	Minor
Major	Disastrous	Disastrous	Critical	Major	Major	Minor
Disastrous	Minor	Disastrous	Critical	Major	Major	Minor
Minor	Disastrous	Disastrous	Critical	Major	Major	Minor
Disastrous	Insignificant	Disastrous	Critical	Major	Major	Minor
Insignificant	Disastrous	Disastrous	Critical	Major	Major	Minor
Critical	Critical	Disastrous	Critical	Mai	Min 3	Minor
Critical	Major	Critical	Critical	Major	Minor	Minor
Major	Critical	Critical	Critical	Major	Minor	Minor
Critical	Minor	Critical	Major	Major	Minor	Minor
Minor	Critical	Critical	Major	Major	Minor	Minor
Critical	Insignificant	Critical	Major	Major	Minor	Minor
Insignificant	Critical	Critical	Major	Major	Minor	Minor
Major	Major	Critical	Major	Major	Minor	Insignificant
Major	Minor	Major	Major	Minor	Minor	Insignificant
Minor	Major	Major	Maj	Minor	Minor	Insignificant
Major	Insignificant	Major	Major	Minor	Minor	Insignificant
Insignificant	Major	Major	Major	Minor	Minor	Insignificant
Minor	Minor	Major	Minor	Minor	Insignificant	Insignificant
Minor	Insignificant	Major	Minor	Minor	Insignificant	Insignificant
Insignificant	Minor	Major	Minor	Minor	Insignificant	Insignificant
Insignificant	Insignificant	Minor	Minor	Insignificant	Insignificant	Insignificant

- On December 2, 2020, the Security of Electricity Supply rules were approved, in accordance with EU Regulation 2019/941 on risk preparedness in the electricity sector
- Risk Preparedness Plan is a strategic framework designed to mitigate risks, ensure quick recovery, and sustain operations during disruptions
- Prepared by GSE in cooperation with the Energy Community:
 - Competent authority Ministry of Economy and Sustainable Development of Georgia
 - Crisis coordinator Inter-Institutional Group for Energy Security (IGES)

gylenysjolek bylenggelengel	
Risk Preparedness Plan For Electricity Sector in	
Georgia	
14 June, 2024	
Co-funded by the EU4Energy Programme of the European Union	1

Thank you for your engagement!

Georgian State Electrosystem